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Abstract— Accurately forecasting construction costs across 

regions is a persistent challenge due to variability in labor 

markets, material prices, geographic constraints, and economic 

conditions. This study introduces a data-driven Area Cost Factor 

(ACF) modeling framework tailored for U.S. civilian construction 

projects, building upon methodologies historically used by the U.S. 

Army Corps of Engineers. We assembled and integrated diverse 

datasets including project-level construction costs, metropolitan 

labor wages, localized material prices, natural hazard risks, 

weather events, and productivity indicators to construct a 

regionalized cost adjustment system. Inflation-adjusted price-per-

square-foot estimates were used as the basis for modeling, 

normalized to 2025 dollars using Consumer Price Index (CPI) 

data.  

Following extensive preprocessing, including outlier filtering, 

log transformations, and feature engineering, we trained and 

evaluated a suite of regression models: Linear Regression, 

Random Forest, XGBoost, and LightGBM. Each model was 

benchmarked using cross-validation and a suite of error metrics 

(RMSE, MAE, MAPE, R-squared). Atlanta was selected as the 

baseline metro for cost normalization due to its consistent data 

coverage. Predicted ACFs for 102 U.S. metros were scaled relative 

to Atlanta, enabling interpretable regional comparisons.  

The LightGBM model achieved the best predictive 

performance, with an R-squared of 0.665 and MAPE of 31.7%. 

Key predictors included project year, natural hazard frequency, 

and labor productivity indices. Comparison with government-

published ACFs revealed general alignment, though discrepancies 

highlight the potential of machine learning to adaptively capture 

localized cost factors not reflected in static indices. The results 

demonstrate the feasibility and accuracy of dynamic ACF 

modeling using real-world inputs, offering enhanced decision-

making tools for planners, developers, and public agencies 

involved in early-stage construction budgeting.  

I. INTRODUCTION 

Accurate and timely estimation of construction costs is a 

critical component of successful project planning and 

execution. The complexity of construction cost estimation 

arises from significant variations in local conditions, including 

labor markets, material availability, regional economic factors, 

and logistical considerations. To address this complexity, Area 

Cost Factors (ACFs) multiplicative adjustments that translate 

baseline or national-average construction cost estimates into 

accurate, region-specific forecasts are employed. ACF 

methodologies, notably utilized by entities such as the U.S. 

Army Corps of Engineers (USACE), allow for robust, 

standardized estimates across geographically diverse areas, 

including international contexts.  

Recognizing the need for similarly rigorous estimation 

practices in the civilian sector, Construction Check, a 

professional construction cost estimation firm based in Atlanta, 

GA, seeks to adapt and refine an ACF model tailored 

specifically for civilian construction projects within the United 

States. The central goal of this project is the development of a 

data-driven, dynamic ACF model that delivers highly accurate 

early-stage cost estimates while accounting for regional pricing 

discrepancies. These models are especially relevant to local 

governments, state agencies, and commercial developers, and 

can substantially improve early-stage planning and budgeting 

for public and private infrastructure projects.  

Moreover, implementing a civilian-oriented ACF model 

bridges the gap between military-based use cases, represented 

by methodologies developed by the USACE and the nuanced 

needs of civilian stakeholders. By utilizing real-world market 

inputs and systematically integrating factors such as regional 

labor and material costs, climatic conditions, natural hazards, 

logistics, and productivity adjustments, our model will 

empower Construction Check to enhance decision-making 

capabilities and reliability of project cost forecasts. Ultimately, 

the successful deployment of this tailored ACF methodology 

will enable stakeholders across the construction sector to 

achieve more accurate budgeting, mitigate financial risks, and 

drive efficient allocation of resources at critical early stages of 

project development. 

II.  LITERATURE REVIEW 

Recent advancements in construction cost estimation 

underscore the necessity for dynamic, region-specific models to 

accurately predict building expenses across diverse 

metropolitan areas. Five pivotal resources, the ENR Q1 2025 

Construction Cost Report, Estimating in Building Construction 

by Dagostino and Peterson, Kim et al. (2013), Elhag and 

Boussabaine (1999), and Horner and Zakieh (1996), offer 

critical insights into trends and methodologies relevant to the 

development of an Area Cost Factor (ACF) model.  

The ENR Q1 2025 Construction Cost Report reveals a 

nuanced landscape of construction costs across the United 

States. The Building Cost Index (BCI) increased by 1.6% over 

the year, while the Construction Cost Index (CCI) rose by 0.9% 

during the same period. These indices reflect fluctuations in 

material prices and labor costs, which vary significantly across 

regions. For instance, certain metropolitan areas experienced 

higher increases in material costs due to supply chain 

constraints and localized demand surges. Additionally, labor 

shortages, particularly in regions with heightened construction 

activity, have driven up labor costs, further influencing overall 

project expenses. These findings underscore the importance of 
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incorporating region-specific data into cost estimation models 

to enhance accuracy.  

Dagostino and Peterson’s textbook, Estimating in Building 

Construction, provides a comprehensive overview of modern 

construction cost estimation practices. Their systematic 

approach emphasizes detailed quantity takeoffs, thorough labor 

and material cost analyses, and the integration of computer-

assisted estimating tools. They advocate adjusting estimates 

based on regional economic indicators and local construction 

practices. This methodology aligns closely with the 

requirements of adaptable ACF models, emphasizing the need 

for responsiveness to the dynamic nature of construction 

markets across metropolitan areas.  

Kim et al. (2013) conducted a comparative study on 

construction cost estimation methods, focusing specifically on 

regression analysis, neural networks, and support vector 

machines. Their research demonstrated the superior accuracy of 

neural networks in estimating school building construction 

costs. This outcome suggests that incorporating machine 

learning techniques into ACF models could significantly 

enhance predictive accuracy, particularly when addressing 

complex, nonlinear relationships inherent in construction data.  

Elhag and Boussabaine (1999) explored various factors 

influencing construction costs, highlighting the importance of 

project size, complexity, and location. They employed artificial 
neural networks to effectively capture and model the intricate 

interactions between these cost drivers. Their findings reinforce 

the potential benefits of integrating advanced computational 

methods into ACF models, allowing for nuanced, precise, and 

dynamic cost predictions.  

Horner and Zakieh (1996) introduced the concept of 

"characteristic items" as a novel method for pricing and 

controlling construction projects. They identified characteristic 

items as frequently occurring, high-value work packages that 

significantly influence overall project costs. Their research 

found a consistent linear correlation between the largest 

quantity item and total package cost, demonstrating that 

focusing on this dominant cost drivers could simplify 

estimation processes without sacrificing accuracy. This 

approach provides a pragmatic yet precise methodology for 

integrating simplified proxies into ACF models, potentially 

streamlining estimation and enhancing operational control.  

Together, these studies collectively highlight essential 

considerations for developing a robust ACF model. The 

convergence of regional variability insights (ENR), detailed 

estimation frameworks (Dagostino and Peterson), advanced 

computational methodologies (Kim; Elhag and Boussabaine), 

and strategic simplifications (Horner and Zakieh) illustrate the 

multifaceted approach necessary to accurately predict 

construction costs across diverse metropolitan areas. 

Incorporating these combined methodologies will enhance the 

accuracy, adaptability, and overall robustness of future ACF 

models. 

III. DATA DESCRIPTION 

A. Construction Check 

Project cost data was collected from Construction Check’s 

database, which was limited to the Commercial construction 

category due to lack of geographic variation in the Civil, 

Infrastructure & Landscaping category. The total MLE of each 

project’s line items were aggregated to get the total project cost, 

then divided by the project’s square footage to control for 

project size. Project year was also extracted from the database 

and used as a feature.   

 

B. Labor Wage Data Collection and Processing 

To assess regional variability in labor costs critical to 

construction cost modeling, we implemented a data acquisition 

pipeline targeting occupational wage data from the U.S. Bureau 

of Labor Statistics (BLS) Occupational Employment and Wage 

Statistics (OEWS) program. Specifically, we utilized the annual 

metropolitan-level wage tables published by BLS, which 

provide detailed compensation data across hundreds of 

Standard Occupational Classification (SOC) codes at various 

geographic levels (https://www.bls.gov/oes/tables.htm). Our 

focus was on skilled trades relevant to general construction, 

aligning with labor roles emphasized in the Army Corps of 

Engineers' Area Cost Factors (ACF) methodology.  

From the complete BLS dataset (`all_data_M_2024.csv`), we 

filtered to retain only metropolitan-level entries, excluding 

national aggregates, and isolated eight key construction 

occupations: Carpenters, Cement Masons and Concrete 

Finishers, Electricians, Structural Iron and Steel Workers, 

Construction Laborers, Painters, Plumbers, Pipefitters, 

Steamfitters, and Roofers. These roles represent a broad cross-

section of labor-intensive construction activities and were 

chosen for their direct alignment with Tri-Service cost 

modeling conventions.  

Each occupation’s median hourly wage (`H_MEDIAN`) was 

extracted for all qualifying metropolitan areas. The dataset was 

then aggregated to create one row per city with individual 

columns for each trade’s wage, enabling direct inter-city 

comparisons. Median wage values were coerced to numeric 

format, and rows with missing or non-numeric values were 

retained for consistency, with averages calculated across 

available trades to generate a composite labor rate 

(`H_MEDIAN_Avg`) per city.  

To control for geographic representation, cities were grouped 

by state and sorted based on data completeness, favoring those 

with the lowest proportion of missing wage records. The top 

two cities per state, as measured by data availability (lowest 

missing count), were selected to serve as representative labor 

markets. The resulting output (`labor_by_city.csv`) serves as a 

geographically balanced panel of labor rates for downstream 

modeling of regional construction costs. 

 

C. Material Data 

To assess regional variability in material pricing relevant to 

construction cost modeling, we used consumer construction 

related data as a proxy for overall construction project material 

costs. A systematic data gathering strategy was implemented 

for various products from various Home Depot stores across 96 

key U.S. metropolitan areas defined by the Department of 
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Defense Area Cost Factors (ACF) framework. The objective 

was to capture market pricing for a standardized set of building 

materials, forming a “market basket” representative of essential 

construction inputs. The market basket mirrors the Tri-Service 

Cost Engineering Committee's baseline labor-material-

equipment (MLE) ratios and is intended to reflect the general 

needs of commercial and residential construction.  

Using a predefined Army Corps of Engineers list of 96 base 

metro areas, we geocoded corresponding ZIP codes and fed 

them into the pipeline to anchor searches to specific store 

locations. To enable precise regional comparison of material 

pricing, each of the 96 metro areas defined by the Department 

of Defense Area Cost Factors (ACF) was assigned geographic 

coordinates using standardized geocoding methods. Latitude 

and longitude coordinates were used both for associating stores 

with metro areas and for enabling distance-based filtering 

during data collection.   

A comprehensive list of US Home Depot Stores was 

extracted from SerpAPI (home-depot-stores-us.json) for each 

metro area centroid (latitude, longitude) and distance was 

computed to all available Home Depot stores. Stores were then 

sorted by distance, and the three closest stores were selected as 

the representative set for that metro. If a metro area had fewer 

than three nearby stores (within a 50-mile threshold), fallback 

logic was used to include the next nearest valid stores, 

prioritizing those within the same state.  

To maintain temporal consistency, scraping was performed 

in a single batch window to avoid confounding price differences 

due to weekly promotions or regional sales events. Output from 

each run was serialized and consolidated into a flat CSV 

(hd_fullscale_final_output.csv), indexed by metro area, store 

ID, and item ID. Data normalization steps were applied to 

standardize unit pricing and reconcile discrepancies in 

packaging (e.g., cost per square foot vs. cost per roll). SKUs not 

found in a given location were logged for availability analysis, 

and in such cases, nearest-store substitution logic was 

optionally enabled to impute missing values.   

 

D. Adjustment Factors 

The USACE utilizes seven matrix factors in addition to 

normalized MLE that affect local construction costs: weather, 

seismic, climatic (exterior envelope zone, wind load), labor 

availability, contractor overhead and profit, logistics and 

mobilization, and local labor productivity (U.S. Army Corps of 

Engineers, 2025). We collected similar metrics at the local, 

state, and regional level to capture weather, natural hazard, 

labor productivity, and logistics and mobilization effects on 

construction cost.  

At the city-level, adverse weather events were collected from 

the NOAA’s Storm Events Database (National Centers for 

Environmental Information, National Oceanic and 

Atmospheric Administration, 2025). This dataset includes 

information for individual episodes of significant weather 

events starting in 1950, such as storms of enough intensity to 

cause loss of life, property damage, or disruption to commerce, 

rare phenomena, and other significant meteorological events. 

For each type of weather event, the mean number of annual 

episodes from 2020-2024 was aggregated at the city level, 

resulting in 16 features.  

We collected information at the state level for 18 natural 

hazards from FEMA’s National Risk Index dataset (Federal 

Emergency Management Agency, 2023). For each hazard, we 

collected the Expected Annual Loss Score and Expected 

Annual Loss Rate – Building fields, as well as the Expected 

Annual Loss Rate composite score. These scores represent the 

average percentage losses to buildings, population, and 

agriculture each year due to the natural hazard.  

11 measures of labor productivity were taken from the U.S. 

Bureau of Labor Statistics’ Private Nonfarm Labor Productivity 

and Costs by State and Region dataset (U.S. Bureau of Labor 

Statistics, 2025).  

20 features were provided by the local area factors in the US 

Army Corps of Engineers Engineering Pamphlet (EP) 1110-1-

8 (U.S. Army Corps of Engineers, Walla Walla District, 2024). 

Local area factors provided transportation and logistics costs 

for 12 regions such as gasoline cost per gallon, diesel cost per 

gallon, and freight rates. 

 

E. Combined Data 

Metro areas of interest were selected by overlapping 

Construction Check historical project data with the three feature 

datasets mentioned above. These metro areas do not map one to 

one with the ACOE dataset as the construction database is not 

complete for all 96 metro areas. There were also several 

Construction Check projects that did not match a metro area in 

the three data sets directly. To account for this, we made the 

following manual changes to better merge the datasets between 

the feature data we collected externally and the Construction 

Check dataset. 

 

Chicago (removed Elgin-Naperville)   

Akron -> Pittsburgh, PA  

Wheeling -> Morgantown, WV  

Fayetteville, NC -> Durham, NC  

Philadelphia, PA -> Allentown, PA  

 

After merging, we had 102 metro areas for ACF prediction. 

IV. EXPLORATORY DATA ANALYSIS OF 

CONSTRUCTION CHECK DATABASE 

Project information in the Construction Check database was 

available across all states, and at the time of evaluation had 

cities for 1,300 cities populated for 2,603 total projects. As 

Georgia was the only state with projects in the Civil, 

Infrastructure & Landscaping construction category, we limited 

our analysis to the Commercial category.  

Line items were coded at varying levels of CSI Code 

granularity, and market basket analysis was conducted at the 

division level. Using Pareto analysis, the top 10 divisions were 

identified based on mean project cost contribution, shown in 

Table 1 These high-impact divisions were used to inform which 

MLE costs should be collected at the local level. 
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Division Number of States Project 

Count 

Mean % 

Project Cost 

Contribution 

Electronic Safety and 

Security 

50 1,444 73.4 

HVAC 42 416 54.7 

Material Processing 

and Handling 

Equipment 

50 1,086 40.7 

Electrical Power 

Generation 
8 19 35.6 

Exterior Improvement 5 126 26.6 

Fire Suppression 43 335 22 

Earthwork 22 169 19.6 

Integrated Automation 2 12 10.3 

Utilities 2 143 10.2 

Electrical 1 116 9.2 

Table 1: Top 10 Divisions by Mean Percentage of Project 

Costs Across all CSI Codes 

 

We also found a wide variation in the number of project per 

project category within commercial construction, with 

educational, government, medical, offices & warehouses, 

religious, residential, retail, and sports categories having at least 

100 projects available. High-impact line items between these 

project categories had some overlap for materials and 

equipment. However, the impact of items such as regulatory, 

scope of bids, and contracts differed, especially for government 

projects. These findings underscore the importance of 

adjustment factors beyond MLE for ACF prediction. 
Although CSI codes and unit costs were provided by the 

Construction Check database, outside indexes such as 

RSMeans City Cost Index would be required for city-level 

analysis. To avoid an outside index biasing ACF prediction, we 

determined that outside data sources should be used for a more 

detailed cost comparison, prompting materials cost collection 

with Home Depot’s API. 
Below we have graphs of Construction Check data created 

during the exploratory data analysis phase. 
 

Figure 1: Distribution of price per square foot 

 

Figure 2: Price per square foot by project category 

 

Figure 3: Carpenter Wage vs. Price per Square Foot 

V.  METHODOLOGY 

A. Exploratory Modeling Attempts 

The predictive modeling process began with a dataset 

comprising of 1,300 U.S. construction projects. These records 

included 117 features, ranging from basic project descriptors 

(e.g., size, year, state) to categorical identifiers such as project 

type and ownership. The response variable was the total cost of 

the project, representing the total reported cost of each project. 

Initial summary statistics revealed considerable skewness and 

dispersion in the target, with a mean of approximately $122 

million and a maximum value exceeding $40 billion. The data 

was highly heterogeneous, with substantial variance in scale 

and category representation, highlighting the need for careful 

preprocessing and modeling design. 
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Our analysis aimed to estimate the Area Cost Factor (ACF) 

using normalized price per square foot data from U.S. 

construction projects. The response variable was initially 

defined as the total project price per square footage but was later 

inflation-adjusted to 2025 dollars using year-specific Consumer 

Price Index (CPI) values. This transformation yielded a new 

target variable, price_per_sq_ft_2025, allowing for cost 

comparisons across project years in constant terms. 
The raw dataset was preprocessed to remove non-numeric 

columns and identifiers. Categorical variables, namely location 

key, construction category, and project category, were encoded 

using mean target encoding to preserve information about 

category-level cost variation. One-hot encoding was also 

selectively applied, particularly for metro area, to preserve 

geographic distinctions. 
The initial baseline model employed was a simple linear 

regression applied to the raw dataset. Although this offered a 

starting point for understanding model behavior, the results 

were poor and uninformative. The model exhibited extreme 

error magnitudes and highly negative R-squared values, a clear 

indication that linearity assumptions were not appropriate given 

the underlying data structure. Performance metrics such as 

RMSE and MAPE confirmed that naive modeling would not 

yield practically useful results. 
Recognizing the presence of significant outlier records, we 

turned to systematic outlier detection. A hybrid approach using 

the interquartile range (IQR), Z-score filtering, and Isolation 

Forest ensemble methods were employed. This process 

identified 147 observations, approximately 11.3% of the data, 

as outliers. These points were disproportionately influential and 

often associated with megaprojects or entries containing 

improbable cost-to-size ratios. Removing these records resulted 

in a cleaner dataset of 1,153 samples, which served as the 

foundation for subsequent modeling steps. 
To address the skewness in the project cost distribution, a log 

transformation was applied. The original skewness of 1.443 

was reduced to -0.755, yielding a more symmetric distribution 

of the target variable and improving model assumptions related 

to homoscedasticity. With the target stabilized, additional 

features were engineered to hopefully better capture domain-

specific patterns. These included cost_per_sqft (cost 

normalized by project size), project_age (derived from the year 

of construction), and an interaction term combining square 

footage with project year. These features were informed by both 

literature research and preliminary correlation analysis and 

expanded the feature set to 108 columns. 
 

Figure 4: K means clustering analysis 
 

Figure 5: Feature Importance 

 

To improve generalizability and capture latent structure in 

the data, we introduced unsupervised clustering. K-means 

clustering with k=10 was applied to segment projects based on 

multivariate similarity. The optimal number of clusters was 

selected using silhouette scoring. This new cluster feature was 

then used to stratify the training and test sets, ensuring that each 

subset preserved the diversity of project types present in the full 

dataset. The final stratified split allocated 80% of the data (922 

samples) for training and 20% (231 samples) for evaluation. 
Due to the high importance of the project square footage 

feature, we employed additional methods to uncover more 

meaningful predictors for our ACF model. 
 

B. Final Model with Feature Normalization Relative to 

Atlanta Metro 

To more completely capture the effects of location MLE and 

other adjustment factors, features were extracted from the raw 

dataset and normalized relative to the median values of Atlanta 

projects. There was not sufficient project data across all cities 

to use the national median as the benchmark. Due to the 

Atlanta-Sandy Springs-Roswell, GA metro area having the 

most robust data available across years and project types, it was 

used as our ACF benchmark. Projects for this metro were 

assigned a baseline value of 1.0 by definition.  Outliers were 

again removed using IQR, Z-score filtering, and Isolation 

Forest ensemble methods. Projects were limited to the 

commercial construction category, and project year was the 

only project-specific feature included with the local MLE and 

adjustment factors. The resulting dataset had 906 samples and 

103 features.  

We used ACF as our new target by dividing project price per 

square foot by the median price of the benchmark Atlanta-

Sandy Springs-Roswell, GA metro projects for the 

corresponding year. A crosswalk of benchmark projects was 

created by taking the median price per square foot of projects 

for all years 1971 onward. For years without a benchmark 

project, the price was calculated using the Consumer Price 

Index (CPI) and the median price per square foot for the most 

recent year with benchmark data (U.S. Inflation Calculator, 

2025). The target was highly skewed, and applying a log 

transformation decreased the skewness from 4.101 to 1.438.  
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The data was split into 80% training data and 20% test data. 

We trained a suite of regression models, including Linear 

Regression, Random Forest, XGBoost, and LightGBM. These 

models were chosen to balance interpretability and predictive 

performance, and to test both linear and nonlinear relationships. 

5-fold cross validation was applied for robust model R-squared 

comparison. Performance metrics include: mean squared error, 

root mean square error, mean absolute error, mean absolute 

percentage error, and R-squared.  

To enable direct comparison of Area Cost Factors (ACFs) 

across metro areas, all predicted ACF values were normalized 

relative to Atlanta. Specifically, the “Atlanta-Sandy Springs-

Roswell, GA” metro was selected as the baseline due to the 

consistency and completeness of its data across years and 

project types. For each model, Random Forest, XGBoost, and 

LightGBM, ACF values for every metro area were divided by 

the corresponding value predicted for Atlanta. This 

normalization procedure ensured that Atlanta had a cost factor 

of exactly 1.0 by definition, while other metros were expressed 

as a ratio of their predicted cost relative to Atlanta. As a result, 

normalized ACF values above 1.0 indicate higher relative costs 

compared to Atlanta, while values below 1.0 represent lower 

costs. The normalized ACFs were compiled into a final dataset 

containing one row per metro area and three model-specific 

normalized columns. This dataset was exported as a CSV and 

used for subsequent comparisons and visualization. 

VI. KEY FINDINGS AND INTERPRETATION 

The results of our project demonstrate the critical importance 

of iterative refinement in predictive modeling for construction 

cost estimation. The comparison between baseline models 

(trained on unprocessed data) and the final tuned models 

(trained on a log-transformed, outlier-filtered, and feature-

enhanced dataset) shows substantial gains in both accuracy and 

stability.   
Initially, model performance was unusable. The linear 

regression baseline completely failed to capture any meaningful 

variance in the target, producing highly negative R-squared 

scores and astronomically high error metrics due to the presence 

of extreme outliers and target skewness. Even ensemble 

methods such as Random Forest and XGBoost, though more 

robust, struggled in their initial implementation, achieving R-

squared values around 0.56–0.58 and MAPE values exceeding 

130%. These early results emphasized the data’s inherent 

complexity and the insufficiency of applying models directly to 

raw values.   

Through targeted iterative approach including log 

transformation of the cost variable, removal of statistical 

outliers, feature engineering of domain-relevant variables, and 

stratified clustering, our models produced much better results. 

Both Random Forest and XGBoost achieved R-squared scores 

greater than 0.85, with MAPE values improving to 

approximately 48–51%. This represents a 6-fold reduction in 

mean absolute percentage error and a dramatic reduction in 

absolute error (MAE), from approximately $18 million to just 

over $6 million.  

Table 2 below summarizes this performance shift: 

Model 
R² 

(Ori.) 

R² 

(Tuned) 

MAE 

(Orig.) 

MAE 

(Tuned) 

MAPE 

(%) 

Orig. 

MAPE 

(%) 

Tuned 

Linear 

Regression 

-7.42 x 

1018 
-0.529 $9.99 B $30.0 M 

2.38 x 

1010 % 
194.4 % 

Random 

Forest 
0.5799 0.8558 $18.6 M $6.18 M 126.5 % 51.2 % 

XGBoost 0.5649 0.8576 $18.8 M $6.13 M 130.5 % 48.2 % 

Table 2: Performance Shift after Initial Model Tuning 
 

Overall, the tuned XGBoost model emerged as the best 

performer, offering the highest R-squared and lowest error 

metrics across all categories. These outcomes provide strong 

empirical support for using advanced ensemble models, 

coupled with domain-specific feature design and robust data 

cleaning, to improve forecasting in construction cost estimation 

contexts.  

Beyond performance, analysis of feature importance offers 

insight into which variables most strongly influenced the model 

predictions. The Linear Regression model assigned 

astronomical coefficients to project_year and project_age 

(~$10 trillion), reflecting multicollinearity and poor model 

conditioning. These coefficients lacked meaningful 

interpretability, further emphasizing the limitations of linear 

methods in this context.  

In contrast, both Random Forest and XGBoost revealed more 

stable and interpretable importance rankings. The interaction 

term sqft_year_interaction (calculated as project_sq_ft x 

project_year) emerged as the most important predictor across 

both models, contributing approximately 47.2% of decision 

splits in Random Forest and 34.7% of predictive gain in 

XGBoost. These results emphasized the high importance of 

project_sq_ft, and thus we sought out other models to identify 
additional predictors for our ACF model.   

VII. RESULTS AND CONCLUSIONS 

Table 3 summarizes the performance of our final four 

predictive models using Atlanta-scaled features. Consistent 

with exploratory analyses, Linear Regression performed the 

worst, yielding a negative cross-validated R-squared and the 

highest error rates across all evaluation metrics. In contrast, 

LightGBM demonstrated the strongest performance, achieving 

the highest test R-squared (0.665) and the lowest RMSE 

(0.265), MAE (0.206), and MAPE (31.7%). Random Forest and 

XGBoost followed in performance, with Random Forest 

slightly outperforming XGBoost across most metrics.   
 

Model 

Train 

CV R-

squared 

+/- std 

Test R-

square

d 

RMSE MAE MAPE 

Linear 

Regression 

-0.234 

+/- 0.537 
0.143 0.423 0.307 54.0% 
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Random 

Forest 

0.494 +/- 

0.066 
0.618 0.283 0.219 33.3% 

XGBoost 
0.389 +/- 

0.098 
0.522 0.316 0.236 36.0% 

LightGBM 
0.519 +/- 

0.048 
0.665 0.265 0.206 31.7% 

Table 3: Evaluation Metrics Using Atlanta-Scaled Features 
 

To interpret model decision-making, feature importances 

from the tree-based models were extracted, shown in Figures 6-

8 below. Project year emerged as the dominant feature in both 

Random Forest and LightGBM, far surpassing all others in 

importance. However, project_year was not in the top ten 

feature importances for XGBoost. This model placed a heavier 

emphasis on natural hazard, weather, and labor productivity 

features and did not have any material cost features in the top 

ten. All three models ranked coastal flooding among their top 

two most influential features, highlighting its consistent 

relevance across modeling approaches.   

Figure 6: Random Forest Top 10 Feature Importances 
 

Figure 7: LightGBM Top 10 Feature Importances (Gain) 
 

Figure 8: XGBoost Top 10 Feature Importances 
 

Model-generated ACFs were generated for 102 metro areas 

using the chosen LightGBM model and are shown in Table 4 

and Table 5 below. Predicted ACFs for civilian construction 

were compared with published military ACFs from the Army 

Corps of Engineers May 2025 PAX newsletter (2025) 

normalized for Atlanta for 46 overlapping metro areas. 

Although there are expected differences between civilian and 

military construction costs, this allowed us to look at 

similarities and differences between regional trends identified 

by the model and those identified by USACE’s analysis. There 

were 12 cases where the model predicted different regional 

trends than what was published by USACE, with 3 predictions 

for lower costs than Atlanta when USACE predicted higher and 

9 predictions for higher costs than Atlanta when USACE 

predicted lower. Importantly, only 8 out of the 102 metros 

evaluated had predicted ACFs below 1, indicating a general 

upward skew in predicted costs compared to Atlanta.   
 

Metro Area 

Predicted 

Civilian 

ACF 

USACE 

Published 

ACF 

Albany-Schenectady-Troy, NY 1.65 1.17 

Albuquerque, NM 1.62 1.01 

Anchorage, AK 1.85 2.58 

Atlanta-Sandy Springs-Roswell, GA 1.00 1.00 

Baltimore-Columbia-Towson, MD 1.49 1.02 

Bangor, ME 1.65 1.21 

Billings, MT 1.22 1.16 

Boise City, ID 1.44 1.17 

Boston-Cambridge-Newton, MA-NH 1.57 1.40 

Bridgeport-Stamford-Danbury, CT 2.35 1.24 

Buffalo-Cheektowaga, NY 1.74 1.18 

Burlington-South Burlington, VT 1.37 1.20 

Chattanooga, TN-GA 1.48 0.92 

Cheyenne, WY 1.56 1.12 

Davenport-Moline-Rock Island, IA-IL 1.29 1.12 

Detroit-Warren-Dearborn, MI 0.91 1.18 
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Dover, DE 1.06 1.11 

Duluth, MN-WI 1.12 1.25 

Fairbanks-College, AK 1.60 2.64 

Gulfport-Biloxi, MS 1.23 0.99 

Jacksonville, FL 1.92 0.97 

Kansas City, MO 1.16 1.08 

Las Vegas-Henderson-North Las Vegas, NV 1.48 1.51 

Lexington-Fayette, KY 1.15 0.98 

Little Rock, AR 1.60 0.91 

Louisville/Jefferson County, KY-IN 1.14 0.96 

Madison, WI 1.07 1.24 

Miami-Fort Lauderdale-West Palm Beach, FL 1.94 1.03 

Minneapolis, MN 0.98 1.25 

Mobile, AL 1.52 0.98 

New Orleans-Metairie, LA 1.80 0.96 

Ogden, UT 1.51 1.13 

Oklahoma City, OK 1.63 1.02 

Omaha, NE-IA 1.27 1.10 

Phoenix-Mesa-Chandler, AZ 0.94 1.03 

Portland-South Portland, ME 1.52 1.22 

Portland-Vancouver-Hillsboro, OR-WA 1.57 1.25 

Providence-Warwick, RI-MA 1.47 1.26 

Rapid City, SD 1.30 1.12 

Sioux Falls, SD-MN 1.21 1.17 

Springfield, MA 1.48 1.22 

Trenton-Princeton, NJ 1.39 1.33 

Urban Honolulu, HI 1.68 2.36 

Washington-Arlington-Alexandria, DC-VA-

MD-WV 1.68 1.19 

Wichita, KS 1.42 0.99 

Table 4: Civilian ACFs from LightGBM Model Compared 

with USACE ACFs from May 2025 PAX Newsletter 

Normalized for Atlanta 
 

Metro Area 

Predicted Civilian 

ACF 

Allentown-Bethlehem-Easton, PA-NJ 0.95 

Amarillo, TX 2.12 

Atlantic City-Hammonton, NJ 1.43 

Augusta-Richmond County, GA-SC 0.93 

Austin-Round Rock-San Marcos, TX 1.76 

Bakersfield-Delano, CA 1.62 

Baton Rouge, LA 1.54 

Bellingham, WA 1.73 

Birmingham, AL 1.37 

Bismarck, ND 1.21 

Bozeman, MT 1.27 

Canton-Massillon, OH 1.34 

Cedar Rapids, IA 1.24 

Champaign-Urbana, IL 1.20 

Charlotte-Concord-Gastonia, NC-SC 1.20 

Chicago, IL 1.19 

Chico, CA 1.62 

Coeur d'Alene, ID 1.27 

Durham-Chapel Hill, NC 1.34 

Elkhart-Goshen, IN 1.31 

Fargo, ND-MN 1.16 

Farmington, NM 1.70 

Fayetteville, AR 1.39 

Fayetteville, NC 1.34 

Flint, MI 0.93 

Green Bay, WI 1.19 

Greenville-Anderson-Greer, SC 1.16 

Hagerstown-Martinsburg, MD-WV 1.58 

Harrisonburg, VA 2.07 

Hartford-West Hartford-East Hartford, CT 2.56 

Huntington-Ashland, WV-KY-OH 1.55 

Indianapolis, IN 1.49 

Jackson, MS 1.35 

Kahului-Wailuku, HI 1.69 

Kennewick-Richland, WA 1.73 

Knoxville, TN 1.50 

Lancaster, PA 1.27 

Lincoln, NE 1.22 

Lynchburg, VA 2.44 

Manchester-Nashua, NH 1.52 

Memphis, TN 1.60 

Morgantown, WV 1.65 

Nashville, TN 1.48 

Norfolk, VA 2.44 

Philadelphia, PA 0.95 

Pittsburgh, PA 1.54 

Provo-Orem-Lehi, UT 1.50 

Reno, NV 1.48 

Saint Louis, MO 1.35 
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Saint. Paul, MN 0.98 

Salem, OR 1.58 

San Juan-Bayamon-Caguas, PR 2.09 

Sierra Vista-Douglas, AZ 1.16 

Spartanburg, SC 1.30 

Topeka, KS 1.55 

Tulsa, OK 1.54 

Wheeling, WV-OH 1.65 

Table 5: Civilian ACFs from LightGBM Model Compared 

with no Corresponding USACE ACF 
 

The final LightGBM model effectively captured regional 

cost differences, reflecting higher ACFs in high-cost metros and 

lower values in more affordable areas. However, the skew 

toward ACFs above 1 suggests potential overestimation in 

certain regions. The strong influence of project year in two out 

of three top-performing models also underscores the need for 

better temporal controls in future datasets. Additionally, the 

prominence of non-cost-related factors such as weather and 

natural hazards suggests that machine learning models may 

offer a more dynamic and context-sensitive alternative to 

traditional, government-published ACF indices. Overall, these 

findings support the feasibility of machine learning for civilian 

ACF estimation, enabling researchers to generate more nuanced 

and adaptive cost predictions when incorporating broader 

economic and environmental variables.   

VIII.  KEY CHALLENGES AND FUTURE 

IMPROVEMENTS 

The development of an accurate, data-driven Area Cost 

Factor (ACF) model encountered several substantial 

challenges, particularly around data acquisition, data 

integration, and model performance. One primary issue was 

sourcing suitable datasets that provided comprehensive, metro-

level detail while remaining accessible for research purposes. 

Many established resources for detailed construction pricing 

data, such as RS Means require costly subscriptions to be able 

to extract and use data. This limitation necessitated the 

development of alternative approaches to get data via SerpAPI 

and special allocation of tokens.   

Another notable challenge was encountered during the 

integration of Construction Check's internal dataset with the 

externally collected material data from Home Depot. Variations 

in regional classifications and naming conventions complicated 

the merging process, requiring careful manual reconciliation 

and adjustments to standardize city-metro area relationships 

across datasets. Specific manual adjustments, such as 

redefining metro boundaries (e.g., replacing "Elgin-Naperville" 

with "Chicago," adjusting "Akron" to "Pittsburgh," or 

substituting "Wheeling" with "Morgantown"), illustrate the 

inherent complexities and limitations of combining diverse data 

sources.  

From a modeling perspective, a persistent challenge was 

avoiding overfitting, especially due to the disproportionate 

predictive importance of project square footage (project_sq_ft) 

and related interaction terms (sqft_year_interaction). Despite 

various preprocessing techniques, including log 

transformations, outlier removal, and feature engineering, the 

dominance of project size consistently overshadowed other 

potentially meaningful variables. This effect limited the 

interpretability of certain model outputs and suggested the 

presence of underlying multicollinearity, reinforcing the need 

for careful feature selection and dimensionality reduction.  

Significant efforts were required to address the skewness and 

heterogeneity in construction cost data. The application of 

multiple preprocessing methods, such as systematic outlier 

detection (Isolations Forest, Z-scores, IQR methods) and 

normalization, was necessary to achieve acceptable modeling 

performance. Yet, the resulting models still showed room for 

improvement, highlighting persistent complexities inherent in 

modeling construction cost data across heterogeneous 

geographic contexts.  

Looking forward, several opportunities for future 

improvements are identified. First, enhancing data collection 

methods to systematically capture and integrate publicly 

available, standardized regional market data could significantly 

reduce the reliance on paid services and improve the scalability 

of the model. Additionally, establishing a robust, automated 

data normalization pipeline would streamline data integration, 

reduce manual intervention, and improve the consistency and 

repeatability of the modeling process.  

Secondly, refining the feature set through more sophisticated 

dimensionality reduction methods and regularization 

techniques could mitigate overfitting risks associated with 

dominant features like project size. Incorporating additional 

variables that more explicitly capture regional economic 

indicators, local regulatory environments, or labor market 

dynamics might also help balance predictive power across 

multiple explanatory variables.  

Finally, employing ensemble or stacking techniques 

combining multiple modeling approaches, or integrating 

temporal modeling to explicitly account for changes in material 

and labor pricing over time, could further improve model 

robustness, predictive accuracy, and generalizability. These 

enhancements would strengthen the utility and adaptability of 

the ACF model, enabling more accurate and reliable forecasting 

of construction costs across diverse metropolitan areas. 
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Workload Distribution: 
Task Description Team Member 

Contributions 

Logistics, 

Sponsor 

Communicati

on 

Submission of project, 

updating sponsor on 

our progress and open 
line of communication 

with Construction 

Check 

Kartik: Canvas submissions, 

sponsor communications 

Construction 

Check EDA 

Analyze Construction 

Check data warehouse 
for market basket and 

ACF validation 

Casey: regional and project 

type distribution, line item 
frequency and importance 

across projects and states, 

missing values and other data 

limitations 

Michael: common work 
descriptions, unit costs by 

project and item 

Materials and 

Equipment 

Market 

Basket 

Evaluate the frequency 

of project line items, 

impact on project cost, 
and how they differ 

across project types 

Casey: Pareto analysis, 

feature importance using 

LightGBM, and association 
rules using Apriori algorithm. 

These were conducted at 

division, subdivision, and 

item code levels. 

External 

Materials 

Data 

Research 

Researched various 
external data sources  

Michael: Data sources 
included: RSMeans, Army 

corps of Engineers, Retail 

data APIs (Home Depot, 

Lowe’s), PRISM Climate 

data, FAF5 Highway data 

External 

Materials 

Data –Home 

Depot API 

Build script to extract 

via SerpAPI, retail 

construction related 

materials data  

Michael: Built basket of 10 

common materials for 

building construction projects 

and extracted store-specific 
data for market basket 

products. Built model to 

determine closest 3 stores per 

metro area based on distance 

for extraction. 

Labor 

Market 

Basket 

Produce a weighted 

average for labor rate 

Kartik: Research on Army 

Corps of Engineers labor 

crafts. Used as a baseline 

standard set of labor crafts for 

a construction project. 
Starting with even weighting, 

goal to map to project 

category-based labor mix. 

External Data 

Collection 

and 

Preprocessing 

Find external data 

sources for labor, 
materials, equipment, 

and additional matrix 

items like weather and 

labor availability 

Casey: aggregated weather, 

natural hazard, labor 
productivity, and 

transportation & logistics data 

from various sources for risk 

adjustment features. 

Aggregated Construction 
Check project data. 

Literature 

Review 

Review of current 

research and market 

research surrounding 

construction cost 
estimation 

Michael: Reviewed 10 

construction cost-based 

research papers to understand 

past cost analysis modeling 
techniques, results and 

findings. Reviewed various 

articles on construction 

related data providers and 

industry trends. 

Midterm 

Report 

Presentation on project 

progress and next 

steps 

All  

Modeling Several iterations of 

models to calculate 

area cost factors 

Michael: Preliminary 

modeling for linear regression 

and logistic regression 

Kartik: Preliminary 

modeling for Random Forest 

Casey: used lessons learned 

from preliminary modeling 

and outside research to create 

the final model using ATL as 

a benchmark  

Streamlit App Streamlit dashboard 

for Construction 

Check to view EDA 

and results 

Kartik 

Github Repo Compiling final code 
and ReadMe for 

sponsors 

Kartik 

Final Report Final writeup of 

project background, 

methodology, and 
results 

All 
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